NMN Improves Mouse Heart Dysfunction Caused by Scarring

Nicotinamide mononucleotide attenuates isoproterenol-induced cardiac fibrosis by regulating oxidative stress and Smad3 acetylation.

Abstract: Aims Cardiac fibrosis is a pathological hallmark of progressive heart diseases currently lacking effective treatment. Nicotinamide mononucleotide (NMN), a member of the vitamin B3 family, is a defined biosynthetic precursor of nicotinamide adenine dinucleotide (NAD⁺). Its beneficial effects on cardiac diseases are known, but its effects on cardiac fibrosis and the underlying mechanism remain unclear. We aimed to elucidate the protective effect of NMN against cardiac fibrosis and its underlying mechanisms of action. Materials and methods Cardiac fibrosis was induced by isoproterenol (ISO) in mice. NMN was administered by intraperitoneal injection. In vitro, cardiac fibroblasts (CFs) were stimulated by transforming growth factor-beta (TGF-β) with or without NMN and sirtinol, a SIRT1 inhibitor. Levels of cardiac fibrosis, NAD⁺/SIRT1 alteration, oxidative stress, and Smad3 acetylation were evaluated by real-time polymerase chain reaction, western blots, immunohistochemistry staining, immunoprecipitation, and assay kits. Key findings ISO treatment induced cardiac dysfunction, fibrosis, and hypertrophy in vivo, whereas NMN alleviated these changes. Additionally, NMN suppressed CFs activation stimulated by TGF-β in vitro. Mechanistically, NMN restored the NAD⁺/SIRT1 axis and inhibited the oxidative stress and Smad3 acetylation induced by ISO or TGF-β. However, the protective effects of NMN were partly antagonized by sirtinol in vitro. Significance NMN could attenuate cardiac fibrosis in vivo and fibroblast activation in vitro by suppressing oxidative stress and Smad3 acetylation in a NAD⁺/SIRT1-dependent manner.

Source: Life Sci. 2021 Mar 3;274:119299. doi: 10.1016/j.lfs.2021.119299. Epub ahead of print. PMID: 33675899.

 

Aged Lung Cells Protected from Functional Decline with NMN

Nicotinamide mononucleotide ameliorates senescence in alveolar epithelial cells.

Abstract: Alveolar epithelial cells (ACEs) gradually senescent as aging, which is one of the main causes of respiratory defense and function decline. Investigating the mechanisms of ACE senescence is important for understanding how the human respiratory system works. NAD+ is reported to reduce during the aging process. Supplementing NAD+ intermediates can activate sirtuin deacylases (SIRT1– SIRT7), which regulates the benefits of exercise and dietary restriction, reduce the level of intracellular oxidative stress, and improve mitochondrial function, thereby reversing cell senescence. We showed that nicotinamide mononucleotide (NMN) could effectively mitigate age-associated physiological decline in the lung of 8–10 months old C57BL/6 mice and bleomycin-induced pulmonary fibrosis in young mice of 6–8 weeks. Besides, the treatment of primary ACEs with NMN can markedly ameliorate cell senescence phenotype in vitro. These findings to improve the respiratory system function and reduce the incidence and mortality from respiratory diseases in the elderly are of great significance.

Source: MedComm. 2021;2:279–287. https://doi.org/10.1002/mco2.62

 

Study Shows NMN Stops Blood Vessel Aging in Mice

CD38 deficiency alleviates Ang II-induced vascular remodeling by inhibiting small extracellular vesicle-mediated vascular smooth muscle cell senescence in mice

Abstract: CD38 is the main enzyme for nicotinamide adenine dinucleotide (NAD) degradation in mammalian cells. Decreased NAD levels are closely related to metabolic syndromes and aging-related diseases. Our study showed that CD38 deficiency significantly alleviated angiotensin II (Ang II)-induced vascular remodeling in mice, as shown by decreased blood pressures; reduced vascular media thickness, media-to-lumen ratio, and collagen deposition; and restored elastin expression. However, our bone marrow transplantation assay showed that CD38 deficiency in lymphocytes led to lack of protection against Ang II-induced vascular remodeling, suggesting that the effects of CD38 on Ang II-induced vascular remodeling might rely primarily on vascular smooth muscle cells (VSMCs), not lymphocytes. In addition, we observed that CD38 deficiency or NAD supplementation remarkably mitigated Ang II-induced vascular senescence by suppressing the biogenesis, secretion, and internalization of senescenceassociated small extracellular vesicles (SA-sEVs), which facilitated the senescence of neighboring non-damaged VSMCs. Furthermore, we found that the protective effects of CD38 deficiency on VSMC senescence were related to restoration of lysosome dysfunction, particularly with respect to the maintenance of sirtuin-mediated mitochondrial homeostasis and activation of the mitochondria–lysosomal axis in VSMCs. In conclusion, our findings demonstrated that CD38 and its associated intracellular NAD decline are critical for Ang II-induced VSMC senescence and vascular remodeling.

Source: Signal Transduct Target Ther. 2021 Jun 11;6(1):223. doi: 10.1038/s41392-021-00625-0. PMID: 34112762.

 

NMN Rejuvenates Bone Tissue Stem Cells

NAP1L2 drives mesenchymal stem cell senescence and suppresses osteogenic differentiation

Abstract: Senescence of bone marrow mesenchymal stem cells (BMSCs) impairs stemness and osteogenic differentiation, but the key regulators for senescence and the related osteogenesis are not well defined. Herein, we screened the gene expression profiles of human BMSCs from young and old donors and identified that elevation of the nucleosome assembly protein 1-like 2 (NAP1L2) expression was correlated with BMSC senescence and impaired osteogenesis. Elevated NAP1L2 expression was observed in replicative cell senescence and induced cell senescence in vitro, and in age-related senescent human and mouse BMSCs in vivo, concomitant with significantly augmented chromatin accessibility detected by ATAC-seq. Loss- and gain-of-functions of NAP1L2 affected activation of NF-κB pathway, status of histone 3 lysine 14 acetylation (H3K14ac), and chromatin accessibility on osteogenic genes in BMSCs. Mechanistic studies revealed that NAP1L2, a histone chaperone, recruited SIRT1 to deacetylate H3K14ac on promoters of osteogenic genes such as Runx2, Sp7, and Bglap and suppressed the osteogenic differentiation of BMSCs. Importantly, molecular docking analysis showed a possible bond between NAP1L2 and an anti-aging reagent, the nicotinamide mononucleotide (NMN), and indeed, administration of NMN alleviated senescent phenotypes of BMSCs. In vivo and clinical evidence from aging mice and patients with senile osteoporosis also confirmed that elevation of NAP1L2 expression was associated with suppressed osteoblastogenesis. Taken together, our findings suggest that NAP1L2 is a regulator of both BMSC cell senescence and osteogenic differentiation, and provide a new theoretical basis for aging-related disease.

Source: Aging Cell. 2022 Jan 15:e13551. doi: 10.1111/acel.13551. Epub ahead of print. PMID: 35032339.

 

Study Shows NMN May Treat Rare Transmissible Neurodegenerative Disorder

PINK1-parkin-mediated neuronal mitophagy deficiency in prion disease

Abstract: A persistent accumulation of damaged mitochondria is part of prion disease pathogenesis. Normally, damaged mitochondria are cleared via a major pathway that involves the E3 ubiquitin ligase parkin and PTEN-induced kinase 1 (PINK1) that together initiate mitophagy, recognize and eliminate damaged mitochondria. However, the precise mechanisms underlying mitophagy in prion disease remain largely unknown. Using prion disease cell models, we observed PINK1-parkin-mediated mitophagy deficiency in which parkin depletion aggravated blocked mitochondrial colocalization with LC3-II-labeled autophagosomes, and significantly increased mitochondrial protein levels, which led to inhibited mitophagy. Parkin overexpression directly induced LC3-II colocalization with mitochondria and alleviated defective mitophagy. Moreover, parkin-mediated mitophagy was dependent on PINK1, since PINK1 depletion blocked mitochondrial Parkin recruitment and reduced optineurin and LC3-II proteins levels, thus inhibiting mitophagy. PINK1 overexpression induced parkin recruitment to the mitochondria, which then stimulated mitophagy. In addition, overexpressed parkin and PINK1 also protected neurons from apoptosis. Furthermore, we found that supplementation with two mitophagy-inducing agents, nicotinamide mononucleotide (NMN) and urolithin A (UA), significantly stimulated PINK1-parkin-mediated mitophagy. However, compared with NMN, UA could not alleviate prion-induced mitochondrial fragmentation and dysfunction, and neuronal apoptosis. These findings show that PINK1-parkin-mediated mitophagy defects lead to an accumulation of damaged mitochondria, thus suggesting that interventions that stimulate mitophagy may be potential therapeutic targets for prion diseases.

Source: Cell Death Dis. 2022 Feb 18;13(2):162. doi: 10.1038/s41419-022-04613-2. PMID: 35184140.